HEMORRHAGIC NECROSIS INDUCED BY ALPHA TUMOR NECROSIS FACTOR IN SOLID TUMORS

Adolf Loefflmann

Eusano, Institute of Cancer Research and Cancer Treatment. 80331 Munich, Germany, Neuhauserstr. 25 / III, *
biokrebstherapie@aol.com

INTRODUCTION. In a preclinical trial an oxygen evolving protein Mr 67 kDa (MDA) in combination with proteins Mr 62 kDa, 43 kDa, 14 kDa (PI) induces hemorrhagic necrosis in rats (1) bearing advanced, chemically induced fibrosarcomas and in a patient with advanced systemic metastases of mammary carcinoma, in a patient with malignant melanomas and in a patient with a pulmonary mass after resection of an adenocarcinoma of the colon. (2) The study confirms that MDA and PI are able to induce inflammation by alpha tumor necrosis factor.

METHOD. Cancer patients get an infusion of MDA and PI, produced in my laboratory combined with moderate hyperthermia to destroy the proteases produced by the tumor. The treatment lasts about 2 hours.

RESULTS Fig. (1)

Alfa Tumor Necrosis Factor Carcinoma of the Prostate
alfa TNF < 8,1 pg/ml

weeks, treatments, 08.08.2001; 05.09.2001; 02.09.2004, Gu
This is the treatment curve of a patient with histologically proven prostate carcinoma by biopsy. The curve shows the increase and decrease of the alfa tumor necrosis during the treatment. The mechanism of carcinogenesis is always the same and starts from the mitochondria (3, 4). The destruction of malignant cell means an increase in blood parameter like in viral hepatitis.

DISCUSSION. The malignant cells are naturally occurring in the body with the ability of infiltration that means the production of proteases. The blockage of mitochondria by electrons is not recognized by the body as foreign. Therefore the immunological system will remain inactive. The most reliable tumor marker is the neuron specific enolase. During carcinogenesis each tumor creates neurons that contains neuron specific enolase (5). The formation of neurons could be proven in eye tumors and bladder tumors. (4)

Hemorrhagic necrosis is triggered by tumor necrosis factor of the macrophages. Due to high level of radical oxygen species in the mitochondria produced by MDA and PI necrosis is seen and not apoptosis. The malignant cells destroyed by the hemorrhagic necrosis are degraded by cytolytic T lymphocytes causing apoptosis. The increase of activated CD 8+ is responsible for the cancer dormancy.(6)

ACKNOWLEDGMENT. This investigation was supported by Eusano, Institute of Cancer Research and Cancer Treatment.

REFERENCES

1) www.biocancertherapy.com p.3 – 4

